MakeItFrom.com
Menu (ESC)

EN 1.4901 Stainless Steel vs. AWS ER90S-D2

Both EN 1.4901 stainless steel and AWS ER90S-D2 are iron alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4901 stainless steel and the bottom bar is AWS ER90S-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 740
710
Tensile Strength: Yield (Proof), MPa 490
600

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1490
1450
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
47
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.6
Embodied Energy, MJ/kg 40
21
Embodied Water, L/kg 89
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 620
980
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 6.9
13
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.070 to 0.12
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 85.8 to 89.1
95.2 to 97.4
Manganese (Mn), % 0.3 to 0.6
1.6 to 2.1
Molybdenum (Mo), % 0.3 to 0.6
0.4 to 0.6
Nickel (Ni), % 0 to 0.4
0 to 0.15
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0.5 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.5