MakeItFrom.com
Menu (ESC)

EN 1.4901 Stainless Steel vs. EN 1.6554 Steel

Both EN 1.4901 stainless steel and EN 1.6554 steel are iron alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4901 stainless steel and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
17 to 21
Fatigue Strength, MPa 310
380 to 520
Impact Strength: V-Notched Charpy, J 38
30 to 45
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 740
780 to 930
Tensile Strength: Yield (Proof), MPa 490
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 650
420
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.4
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 40
22
Embodied Water, L/kg 89
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 620
810 to 1650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
27 to 33
Strength to Weight: Bending, points 23
24 to 27
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 23
23 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.23 to 0.28
Chromium (Cr), % 8.5 to 9.5
0.7 to 0.9
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 85.8 to 89.1
94.6 to 97.3
Manganese (Mn), % 0.3 to 0.6
0.6 to 0.9
Molybdenum (Mo), % 0.3 to 0.6
0.2 to 0.3
Nickel (Ni), % 0 to 0.4
1.0 to 2.0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0 to 0.030
Zirconium (Zr), % 0 to 0.010
0