MakeItFrom.com
Menu (ESC)

EN 1.4901 Stainless Steel vs. EN 1.7367 Steel

Both EN 1.4901 stainless steel and EN 1.7367 steel are iron alloys. Both are furnished in the normalized and tempered condition. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4901 stainless steel and the bottom bar is EN 1.7367 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
18
Fatigue Strength, MPa 310
310
Impact Strength: V-Notched Charpy, J 38
31
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 740
670
Tensile Strength: Yield (Proof), MPa 490
460

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 650
600
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
26
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
37
Embodied Water, L/kg 89
88

Common Calculations

PREN (Pitting Resistance) 14
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 620
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 6.9
6.9
Thermal Shock Resistance, points 23
19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0 to 0.020
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.080 to 0.12
Chromium (Cr), % 8.5 to 9.5
8.0 to 9.5
Iron (Fe), % 85.8 to 89.1
87.3 to 90.3
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0.3 to 0.6
0.85 to 1.1
Nickel (Ni), % 0 to 0.4
0 to 0.4
Niobium (Nb), % 0.040 to 0.090
0.060 to 0.1
Nitrogen (N), % 0.030 to 0.070
0.030 to 0.070
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0.2 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.010
0 to 0.010
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0.18 to 0.25
Zirconium (Zr), % 0 to 0.010
0 to 0.010