MakeItFrom.com
Menu (ESC)

EN 1.4901 Stainless Steel vs. N06002 Nickel

EN 1.4901 stainless steel belongs to the iron alloys classification, while N06002 nickel belongs to the nickel alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4901 stainless steel and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
41
Fatigue Strength, MPa 310
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 460
520
Tensile Strength: Ultimate (UTS), MPa 740
760
Tensile Strength: Yield (Proof), MPa 490
310

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Maximum Temperature: Mechanical, °C 650
990
Melting Completion (Liquidus), °C 1490
1360
Melting Onset (Solidus), °C 1450
1260
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 26
9.9
Thermal Expansion, µm/m-K 12
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 2.8
9.3
Embodied Energy, MJ/kg 40
130
Embodied Water, L/kg 89
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
250
Resilience: Unit (Modulus of Resilience), kJ/m3 620
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 6.9
2.6
Thermal Shock Resistance, points 23
19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.050 to 0.15
Chromium (Cr), % 8.5 to 9.5
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Iron (Fe), % 85.8 to 89.1
17 to 20
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.6
8.0 to 10
Nickel (Ni), % 0 to 0.4
42.3 to 54
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0.2 to 1.0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0