MakeItFrom.com
Menu (ESC)

EN 1.4901 Stainless Steel vs. S40975 Stainless Steel

Both EN 1.4901 stainless steel and S40975 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4901 stainless steel and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
22
Fatigue Strength, MPa 310
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Shear Strength, MPa 460
290
Tensile Strength: Ultimate (UTS), MPa 740
460
Tensile Strength: Yield (Proof), MPa 490
310

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Corrosion, °C 380
450
Maximum Temperature: Mechanical, °C 650
710
Melting Completion (Liquidus), °C 1490
1450
Melting Onset (Solidus), °C 1450
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
26
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 40
28
Embodied Water, L/kg 89
95

Common Calculations

PREN (Pitting Resistance) 14
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
93
Resilience: Unit (Modulus of Resilience), kJ/m3 620
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 6.9
7.0
Thermal Shock Resistance, points 23
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
10.5 to 11.7
Iron (Fe), % 85.8 to 89.1
84.4 to 89
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0.5 to 1.0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0 to 0.75
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0