MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. 3103 Aluminum

EN 1.4903 stainless steel belongs to the iron alloys classification, while 3103 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is 3103 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 20 to 21
1.1 to 28
Fatigue Strength, MPa 320 to 330
38 to 83
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 420
68 to 130
Tensile Strength: Ultimate (UTS), MPa 670 to 680
100 to 220
Tensile Strength: Yield (Proof), MPa 500
39 to 200

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 650
190
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
160
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
42
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 88
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 650
11 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 24
10 to 22
Strength to Weight: Bending, points 22
18 to 30
Thermal Diffusivity, mm2/s 7.0
64
Thermal Shock Resistance, points 23
4.6 to 9.9

Alloy Composition

Aluminum (Al), % 0 to 0.040
96.3 to 99.1
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0 to 0.1
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 87.1 to 90.5
0 to 0.7
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 0.3 to 0.6
0.9 to 1.5
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.15