MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. 5652 Aluminum

EN 1.4903 stainless steel belongs to the iron alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 20 to 21
6.8 to 25
Fatigue Strength, MPa 320 to 330
60 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 420
110 to 170
Tensile Strength: Ultimate (UTS), MPa 670 to 680
190 to 290
Tensile Strength: Yield (Proof), MPa 500
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 650
190
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.6
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 88
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 650
40 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 24
20 to 30
Strength to Weight: Bending, points 22
27 to 36
Thermal Diffusivity, mm2/s 7.0
57
Thermal Shock Resistance, points 23
8.4 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.040
95.8 to 97.7
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0.15 to 0.35
Copper (Cu), % 0 to 0.3
0 to 0.040
Iron (Fe), % 87.1 to 90.5
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0.3 to 0.6
0 to 0.010
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15