MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. ASTM A228 Music Wire

Both EN 1.4903 stainless steel and ASTM A228 music wire are iron alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is ASTM A228 music wire.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 21
12
Fatigue Strength, MPa 320 to 330
1280
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
72
Shear Strength, MPa 420
1470
Tensile Strength: Ultimate (UTS), MPa 670 to 680
2450
Tensile Strength: Yield (Proof), MPa 500
2050

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 650
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
49
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 36
19
Embodied Water, L/kg 88
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
87
Strength to Weight: Bending, points 22
52
Thermal Diffusivity, mm2/s 7.0
13
Thermal Shock Resistance, points 23
79

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.12
0.7 to 1.0
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 87.1 to 90.5
98 to 99
Manganese (Mn), % 0.3 to 0.6
0.2 to 0.6
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0.1 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0.18 to 0.25
0