MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. ASTM B817 Type I

EN 1.4903 stainless steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 20 to 21
4.0 to 13
Fatigue Strength, MPa 320 to 330
360 to 520
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 670 to 680
770 to 960
Tensile Strength: Yield (Proof), MPa 500
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 650
340
Melting Completion (Liquidus), °C 1460
1600
Melting Onset (Solidus), °C 1420
1550
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 26
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 36
610
Embodied Water, L/kg 88
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 650
2310 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 24
48 to 60
Strength to Weight: Bending, points 22
42 to 49
Thermal Diffusivity, mm2/s 7.0
2.9
Thermal Shock Resistance, points 23
54 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.040
5.5 to 6.8
Carbon (C), % 0.080 to 0.12
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 87.1 to 90.5
0 to 0.4
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0.18 to 0.25
3.5 to 4.5
Residuals, % 0
0 to 0.4