MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. C33000 Brass

EN 1.4903 stainless steel belongs to the iron alloys classification, while C33000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is C33000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
7.0 to 60
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Shear Strength, MPa 420
240 to 300
Tensile Strength: Ultimate (UTS), MPa 670 to 680
320 to 520
Tensile Strength: Yield (Proof), MPa 500
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 650
130
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 26
120
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
29

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 36
45
Embodied Water, L/kg 88
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 650
60 to 950
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
11 to 18
Strength to Weight: Bending, points 22
13 to 18
Thermal Diffusivity, mm2/s 7.0
37
Thermal Shock Resistance, points 23
11 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0 to 0.3
65 to 68
Iron (Fe), % 87.1 to 90.5
0 to 0.070
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
30.8 to 34.8
Residuals, % 0
0 to 0.4