MakeItFrom.com
Menu (ESC)

EN 1.4905 Stainless Steel vs. 201.0 Aluminum

EN 1.4905 stainless steel belongs to the iron alloys classification, while 201.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4905 stainless steel and the bottom bar is 201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 19
4.4 to 20
Fatigue Strength, MPa 330
120 to 150
Impact Strength: V-Notched Charpy, J 38
10 to 22
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 460
290
Tensile Strength: Ultimate (UTS), MPa 740
370 to 470
Tensile Strength: Yield (Proof), MPa 510
220 to 400

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 660
170
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1440
570
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 26
120
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
30 to 33
Electrical Conductivity: Equal Weight (Specific), % IACS 4.2
87 to 97

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 2.8
8.7
Embodied Energy, MJ/kg 40
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
19 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 680
330 to 1160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 26
33 to 42
Strength to Weight: Bending, points 23
37 to 44
Thermal Diffusivity, mm2/s 7.0
45
Thermal Shock Resistance, points 25
19 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.040
92.1 to 95.1
Boron (B), % 0.00050 to 0.0050
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
4.0 to 5.2
Iron (Fe), % 86.2 to 88.8
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.55
Manganese (Mn), % 0.3 to 0.6
0.2 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0.1 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.050 to 0.090
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.1 to 0.5
0 to 0.1
Silver (Ag), % 0
0.4 to 1.0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0.15 to 0.35
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Residuals, % 0
0 to 0.1