MakeItFrom.com
Menu (ESC)

EN 1.4905 Stainless Steel vs. ACI-ASTM CA28MWV Steel

Both EN 1.4905 stainless steel and ACI-ASTM CA28MWV steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4905 stainless steel and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
11
Fatigue Strength, MPa 330
470
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 740
1080
Tensile Strength: Yield (Proof), MPa 510
870

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Corrosion, °C 380
380
Maximum Temperature: Mechanical, °C 660
740
Melting Completion (Liquidus), °C 1480
1470
Melting Onset (Solidus), °C 1440
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
25
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 4.2
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 40
44
Embodied Water, L/kg 90
100

Common Calculations

PREN (Pitting Resistance) 15
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 680
1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
38
Strength to Weight: Bending, points 23
30
Thermal Diffusivity, mm2/s 7.0
6.6
Thermal Shock Resistance, points 25
40

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Boron (B), % 0.00050 to 0.0050
0
Carbon (C), % 0.090 to 0.13
0.2 to 0.28
Chromium (Cr), % 8.5 to 9.5
11 to 12.5
Iron (Fe), % 86.2 to 88.8
81.4 to 85.8
Manganese (Mn), % 0.3 to 0.6
0.5 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0.9 to 1.3
Nickel (Ni), % 0.1 to 0.4
0.5 to 1.0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.050 to 0.090
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0.1 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Tungsten (W), % 0.9 to 1.1
0.9 to 1.3
Vanadium (V), % 0.18 to 0.25
0.2 to 0.3