MakeItFrom.com
Menu (ESC)

EN 1.4905 Stainless Steel vs. EN 1.4945 Stainless Steel

Both EN 1.4905 stainless steel and EN 1.4945 stainless steel are iron alloys. They have 73% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4905 stainless steel and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
19 to 34
Fatigue Strength, MPa 330
230 to 350
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 460
430 to 460
Tensile Strength: Ultimate (UTS), MPa 740
640 to 740
Tensile Strength: Yield (Proof), MPa 510
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 380
520
Maximum Temperature: Mechanical, °C 660
920
Melting Completion (Liquidus), °C 1480
1490
Melting Onset (Solidus), °C 1440
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
14
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 4.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 2.8
5.0
Embodied Energy, MJ/kg 40
73
Embodied Water, L/kg 90
150

Common Calculations

PREN (Pitting Resistance) 15
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 680
210 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
22 to 25
Strength to Weight: Bending, points 23
20 to 22
Thermal Diffusivity, mm2/s 7.0
3.7
Thermal Shock Resistance, points 25
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Boron (B), % 0.00050 to 0.0050
0
Carbon (C), % 0.090 to 0.13
0.040 to 0.1
Chromium (Cr), % 8.5 to 9.5
15.5 to 17.5
Iron (Fe), % 86.2 to 88.8
57.9 to 65.7
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0.1 to 0.4
15.5 to 17.5
Niobium (Nb), % 0.060 to 0.1
0.4 to 1.2
Nitrogen (N), % 0.050 to 0.090
0.060 to 0.14
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0.1 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.015
Tungsten (W), % 0.9 to 1.1
2.5 to 3.5
Vanadium (V), % 0.18 to 0.25
0