MakeItFrom.com
Menu (ESC)

EN 1.4905 Stainless Steel vs. C95500 Bronze

EN 1.4905 stainless steel belongs to the iron alloys classification, while C95500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4905 stainless steel and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19
8.4 to 10
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 740
700 to 850
Tensile Strength: Yield (Proof), MPa 510
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 660
230
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1440
1040
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 26
42
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 4.2
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 2.8
3.5
Embodied Energy, MJ/kg 40
57
Embodied Water, L/kg 90
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 680
420 to 950
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 26
24 to 29
Strength to Weight: Bending, points 23
21 to 24
Thermal Diffusivity, mm2/s 7.0
11
Thermal Shock Resistance, points 25
24 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.040
10 to 11.5
Boron (B), % 0.00050 to 0.0050
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
78 to 84
Iron (Fe), % 86.2 to 88.8
3.0 to 5.0
Manganese (Mn), % 0.3 to 0.6
0 to 3.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0.1 to 0.4
3.0 to 5.5
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.050 to 0.090
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.1 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Residuals, % 0
0 to 0.5