MakeItFrom.com
Menu (ESC)

EN 1.4905 Stainless Steel vs. S30600 Stainless Steel

Both EN 1.4905 stainless steel and S30600 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4905 stainless steel and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
45
Fatigue Strength, MPa 330
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 460
430
Tensile Strength: Ultimate (UTS), MPa 740
610
Tensile Strength: Yield (Proof), MPa 510
270

Thermal Properties

Latent Heat of Fusion, J/g 270
350
Maximum Temperature: Corrosion, °C 380
410
Maximum Temperature: Mechanical, °C 660
950
Melting Completion (Liquidus), °C 1480
1380
Melting Onset (Solidus), °C 1440
1330
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 26
14
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 4.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 7.9
7.6
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 40
51
Embodied Water, L/kg 90
150

Common Calculations

PREN (Pitting Resistance) 15
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
220
Resilience: Unit (Modulus of Resilience), kJ/m3 680
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 7.0
3.7
Thermal Shock Resistance, points 25
14

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Boron (B), % 0.00050 to 0.0050
0
Carbon (C), % 0.090 to 0.13
0 to 0.018
Chromium (Cr), % 8.5 to 9.5
17 to 18.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 86.2 to 88.8
58.9 to 65.3
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.2
Nickel (Ni), % 0.1 to 0.4
14 to 15.5
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.050 to 0.090
0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0.1 to 0.5
3.7 to 4.3
Sulfur (S), % 0 to 0.010
0 to 0.020
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0