MakeItFrom.com
Menu (ESC)

EN 1.4910 Stainless Steel vs. S40930 Stainless Steel

Both EN 1.4910 stainless steel and S40930 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4910 stainless steel and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
23
Fatigue Strength, MPa 250
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 450
270
Tensile Strength: Ultimate (UTS), MPa 650
430
Tensile Strength: Yield (Proof), MPa 290
190

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
460
Maximum Temperature: Mechanical, °C 950
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
8.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.3
Embodied Energy, MJ/kg 54
32
Embodied Water, L/kg 150
94

Common Calculations

PREN (Pitting Resistance) 27
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
80
Resilience: Unit (Modulus of Resilience), kJ/m3 210
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
16
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 4.3
6.7
Thermal Shock Resistance, points 14
16

Alloy Composition

Boron (B), % 0.0015 to 0.0050
0
Carbon (C), % 0 to 0.040
0 to 0.030
Chromium (Cr), % 16 to 18
10.5 to 11.7
Iron (Fe), % 62 to 69.9
84.7 to 89.4
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 12 to 14
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0.1 to 0.18
0 to 0.030
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.050 to 0.2