MakeItFrom.com
Menu (ESC)

EN 1.4911 Stainless Steel vs. 5154A Aluminum

EN 1.4911 stainless steel belongs to the iron alloys classification, while 5154A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4911 stainless steel and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 11
1.1 to 19
Fatigue Strength, MPa 530
83 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 640
140 to 210
Tensile Strength: Ultimate (UTS), MPa 1070
230 to 370
Tensile Strength: Yield (Proof), MPa 970
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 700
190
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 20
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
32
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.4
8.8
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 2410
68 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 38
24 to 38
Strength to Weight: Bending, points 30
31 to 43
Thermal Diffusivity, mm2/s 5.4
53
Thermal Shock Resistance, points 37
10 to 16

Alloy Composition

Aluminum (Al), % 0
93.7 to 96.9
Boron (B), % 0.0050 to 0.015
0
Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 9.8 to 11.2
0 to 0.25
Cobalt (Co), % 5.0 to 7.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 75.7 to 83.8
0 to 0.5
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0.3 to 1.3
0 to 0.5
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 0.2 to 1.2
0
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.7
0
Vanadium (V), % 0.1 to 0.4
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15