MakeItFrom.com
Menu (ESC)

EN 1.4911 Stainless Steel vs. EN 2.4668 Nickel

EN 1.4911 stainless steel belongs to the iron alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4911 stainless steel and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11
14
Fatigue Strength, MPa 530
590
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
75
Shear Strength, MPa 640
840
Tensile Strength: Ultimate (UTS), MPa 1070
1390
Tensile Strength: Yield (Proof), MPa 970
1160

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 700
980
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 20
13
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
75
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.4
13
Embodied Energy, MJ/kg 49
190
Embodied Water, L/kg 130
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 2410
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 38
46
Strength to Weight: Bending, points 30
33
Thermal Diffusivity, mm2/s 5.4
3.5
Thermal Shock Resistance, points 37
40

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Boron (B), % 0.0050 to 0.015
0.0020 to 0.0060
Carbon (C), % 0.050 to 0.12
0.020 to 0.080
Chromium (Cr), % 9.8 to 11.2
17 to 21
Cobalt (Co), % 5.0 to 7.0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 75.7 to 83.8
11.2 to 24.6
Manganese (Mn), % 0.3 to 1.3
0 to 0.35
Molybdenum (Mo), % 0.5 to 1.0
2.8 to 3.3
Nickel (Ni), % 0.2 to 1.2
50 to 55
Niobium (Nb), % 0.2 to 0.5
4.7 to 5.5
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0.1 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2
Tungsten (W), % 0 to 0.7
0
Vanadium (V), % 0.1 to 0.4
0