MakeItFrom.com
Menu (ESC)

EN 1.4911 Stainless Steel vs. EN AC-43100 Aluminum

EN 1.4911 stainless steel belongs to the iron alloys classification, while EN AC-43100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4911 stainless steel and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 11
1.1 to 2.5
Fatigue Strength, MPa 530
68 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 1070
180 to 270
Tensile Strength: Yield (Proof), MPa 970
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 270
540
Maximum Temperature: Mechanical, °C 700
170
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 20
140
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
37
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 3.4
7.8
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 130
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 2410
66 to 360
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 38
20 to 29
Strength to Weight: Bending, points 30
28 to 36
Thermal Diffusivity, mm2/s 5.4
60
Thermal Shock Resistance, points 37
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
86.9 to 90.8
Boron (B), % 0.0050 to 0.015
0
Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 9.8 to 11.2
0
Cobalt (Co), % 5.0 to 7.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 75.7 to 83.8
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0.3 to 1.3
0 to 0.45
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 0.2 to 1.2
0 to 0.050
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.8
9.0 to 11
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 0 to 0.7
0
Vanadium (V), % 0.1 to 0.4
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15