MakeItFrom.com
Menu (ESC)

EN 1.4911 Stainless Steel vs. SAE-AISI 50B60 Steel

Both EN 1.4911 stainless steel and SAE-AISI 50B60 steel are iron alloys. They have 81% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4911 stainless steel and the bottom bar is SAE-AISI 50B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11
12 to 20
Fatigue Strength, MPa 530
240 to 330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Shear Strength, MPa 640
380
Tensile Strength: Ultimate (UTS), MPa 1070
610 to 630
Tensile Strength: Yield (Proof), MPa 970
350 to 530

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 700
410
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 20
45
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 130
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
71 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 2410
330 to 750
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 38
22 to 23
Strength to Weight: Bending, points 30
20 to 21
Thermal Diffusivity, mm2/s 5.4
12
Thermal Shock Resistance, points 37
20

Alloy Composition

Boron (B), % 0.0050 to 0.015
0.00050 to 0.0030
Carbon (C), % 0.050 to 0.12
0.56 to 0.64
Chromium (Cr), % 9.8 to 11.2
0.4 to 0.6
Cobalt (Co), % 5.0 to 7.0
0
Iron (Fe), % 75.7 to 83.8
97.3 to 98.1
Manganese (Mn), % 0.3 to 1.3
0.75 to 1.0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 0.2 to 1.2
0
Niobium (Nb), % 0.2 to 0.5
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.1 to 0.8
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.040
Tungsten (W), % 0 to 0.7
0
Vanadium (V), % 0.1 to 0.4
0