MakeItFrom.com
Menu (ESC)

EN 1.4912 Stainless Steel vs. 4015 Aluminum

EN 1.4912 stainless steel belongs to the iron alloys classification, while 4015 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4912 stainless steel and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
35 to 70
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 40
1.1 to 23
Fatigue Strength, MPa 200
46 to 71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 420
82 to 120
Tensile Strength: Ultimate (UTS), MPa 610
130 to 220
Tensile Strength: Yield (Proof), MPa 230
50 to 200

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 940
160
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
130

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.8
8.1
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 130
18 to 290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
13 to 22
Strength to Weight: Bending, points 20
21 to 30
Thermal Diffusivity, mm2/s 4.2
66
Thermal Shock Resistance, points 14
5.7 to 9.7

Alloy Composition

Aluminum (Al), % 0
94.9 to 97.9
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 64.6 to 73.6
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0 to 2.0
0.6 to 1.2
Nickel (Ni), % 9.0 to 12
0
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
1.4 to 2.2
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15