MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. AISI 304N Stainless Steel

Both EN 1.4913 stainless steel and AISI 304N stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is AISI 304N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 14 to 22
9.1 to 45
Fatigue Strength, MPa 320 to 480
220 to 440
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 550 to 590
420 to 700
Tensile Strength: Ultimate (UTS), MPa 870 to 980
620 to 1180
Tensile Strength: Yield (Proof), MPa 480 to 850
270 to 850

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 430
420
Maximum Temperature: Mechanical, °C 700
960
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 24
16
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
15
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.0
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 97
150

Common Calculations

PREN (Pitting Resistance) 14
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
98 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
180 to 1830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 35
22 to 42
Strength to Weight: Bending, points 26 to 28
21 to 32
Thermal Diffusivity, mm2/s 6.5
4.2
Thermal Shock Resistance, points 31 to 34
14 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0 to 0.080
Chromium (Cr), % 10 to 11.5
18 to 20
Iron (Fe), % 84.5 to 88.3
66.4 to 73.9
Manganese (Mn), % 0.4 to 0.9
0 to 2.0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
8.0 to 10.5
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0.1 to 0.16
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0.1 to 0.3
0

Comparable Variants