MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. EN 1.4567 Stainless Steel

Both EN 1.4913 stainless steel and EN 1.4567 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14 to 22
22 to 51
Fatigue Strength, MPa 320 to 480
190 to 260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 550 to 590
390 to 490
Tensile Strength: Ultimate (UTS), MPa 870 to 980
550 to 780
Tensile Strength: Yield (Proof), MPa 480 to 850
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 430
420
Maximum Temperature: Mechanical, °C 700
930
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 24
11
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.1
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 97
150

Common Calculations

PREN (Pitting Resistance) 14
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
100 to 400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 35
19 to 27
Strength to Weight: Bending, points 26 to 28
19 to 24
Thermal Diffusivity, mm2/s 6.5
3.0
Thermal Shock Resistance, points 31 to 34
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0 to 0.040
Chromium (Cr), % 10 to 11.5
17 to 19
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 84.5 to 88.3
63.3 to 71.5
Manganese (Mn), % 0.4 to 0.9
0 to 2.0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
8.5 to 10.5
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0.1 to 0.3
0