MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. EN 1.7230 Steel

Both EN 1.4913 stainless steel and EN 1.7230 steel are iron alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is EN 1.7230 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14 to 22
11 to 12
Fatigue Strength, MPa 320 to 480
320 to 460
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 870 to 980
720 to 910
Tensile Strength: Yield (Proof), MPa 480 to 850
510 to 740

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 700
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 24
44
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.5
Embodied Energy, MJ/kg 41
20
Embodied Water, L/kg 97
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
79 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
700 to 1460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 35
26 to 32
Strength to Weight: Bending, points 26 to 28
23 to 27
Thermal Diffusivity, mm2/s 6.5
12
Thermal Shock Resistance, points 31 to 34
21 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0.3 to 0.37
Chromium (Cr), % 10 to 11.5
0.8 to 1.2
Iron (Fe), % 84.5 to 88.3
96.7 to 98.3
Manganese (Mn), % 0.4 to 0.9
0.5 to 0.8
Molybdenum (Mo), % 0.5 to 0.8
0.15 to 0.3
Nickel (Ni), % 0.2 to 0.6
0
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0.1 to 0.3
0