EN 1.4913 Stainless Steel vs. EN 1.7383 Steel
Both EN 1.4913 stainless steel and EN 1.7383 steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is EN 1.7383 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 14 to 22 | |
20 to 23 |
Fatigue Strength, MPa | 320 to 480 | |
210 to 270 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 75 | |
74 |
Shear Strength, MPa | 550 to 590 | |
350 to 380 |
Tensile Strength: Ultimate (UTS), MPa | 870 to 980 | |
560 to 610 |
Tensile Strength: Yield (Proof), MPa | 480 to 850 | |
300 to 400 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
260 |
Maximum Temperature: Mechanical, °C | 700 | |
460 |
Melting Completion (Liquidus), °C | 1460 | |
1470 |
Melting Onset (Solidus), °C | 1410 | |
1430 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 24 | |
39 |
Thermal Expansion, µm/m-K | 11 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.9 | |
7.7 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.3 | |
8.8 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 9.0 | |
3.9 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 2.9 | |
1.8 |
Embodied Energy, MJ/kg | 41 | |
23 |
Embodied Water, L/kg | 97 | |
59 |
Common Calculations
PREN (Pitting Resistance) | 14 | |
5.6 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 130 to 160 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 600 to 1860 | |
240 to 420 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 31 to 35 | |
20 to 22 |
Strength to Weight: Bending, points | 26 to 28 | |
19 to 20 |
Thermal Diffusivity, mm2/s | 6.5 | |
11 |
Thermal Shock Resistance, points | 31 to 34 | |
16 to 18 |
Alloy Composition
Aluminum (Al), % | 0 to 0.020 | |
0 to 0.040 |
Boron (B), % | 0 to 0.0015 | |
0 |
Carbon (C), % | 0.17 to 0.23 | |
0.080 to 0.15 |
Chromium (Cr), % | 10 to 11.5 | |
2.0 to 2.5 |
Copper (Cu), % | 0 | |
0 to 0.3 |
Iron (Fe), % | 84.5 to 88.3 | |
94.3 to 96.6 |
Manganese (Mn), % | 0.4 to 0.9 | |
0.4 to 0.8 |
Molybdenum (Mo), % | 0.5 to 0.8 | |
0.9 to 1.1 |
Nickel (Ni), % | 0.2 to 0.6 | |
0 to 0.3 |
Niobium (Nb), % | 0.25 to 0.55 | |
0 |
Nitrogen (N), % | 0.050 to 0.1 | |
0 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.5 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.010 |
Vanadium (V), % | 0.1 to 0.3 | |
0 |