MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. EN AC-46000 Aluminum

EN 1.4913 stainless steel belongs to the iron alloys classification, while EN AC-46000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is EN AC-46000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 14 to 22
1.0
Fatigue Strength, MPa 320 to 480
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
28
Tensile Strength: Ultimate (UTS), MPa 870 to 980
270
Tensile Strength: Yield (Proof), MPa 480 to 850
160

Thermal Properties

Latent Heat of Fusion, J/g 270
530
Maximum Temperature: Mechanical, °C 700
180
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1410
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 24
100
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.9
7.6
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 97
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 31 to 35
26
Strength to Weight: Bending, points 26 to 28
33
Thermal Diffusivity, mm2/s 6.5
42
Thermal Shock Resistance, points 31 to 34
12

Alloy Composition

Aluminum (Al), % 0 to 0.020
79.7 to 90
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 10 to 11.5
0 to 0.15
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 84.5 to 88.3
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0.4 to 0.9
0 to 0.55
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
0 to 0.55
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
8.0 to 11
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 1.2
Residuals, % 0
0 to 0.25