MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. C19200 Copper

EN 1.4913 stainless steel belongs to the iron alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14 to 22
2.0 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 550 to 590
190 to 300
Tensile Strength: Ultimate (UTS), MPa 870 to 980
280 to 530
Tensile Strength: Yield (Proof), MPa 480 to 850
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 700
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 24
240
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 97
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
42 to 1120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 31 to 35
8.8 to 17
Strength to Weight: Bending, points 26 to 28
11 to 16
Thermal Diffusivity, mm2/s 6.5
69
Thermal Shock Resistance, points 31 to 34
10 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0
98.5 to 99.19
Iron (Fe), % 84.5 to 88.3
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.4 to 0.9
0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
0
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0.010 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2