MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. C67600 Bronze

EN 1.4913 stainless steel belongs to the iron alloys classification, while C67600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is C67600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14 to 22
13 to 33
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Shear Strength, MPa 550 to 590
270 to 350
Tensile Strength: Ultimate (UTS), MPa 870 to 980
430 to 570
Tensile Strength: Yield (Proof), MPa 480 to 850
170 to 380

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 700
120
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 24
110
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 97
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
63 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
140 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 35
15 to 20
Strength to Weight: Bending, points 26 to 28
16 to 19
Thermal Diffusivity, mm2/s 6.5
35
Thermal Shock Resistance, points 31 to 34
14 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 84.5 to 88.3
0.4 to 1.3
Lead (Pb), % 0
0.5 to 1.0
Manganese (Mn), % 0.4 to 0.9
0.050 to 0.5
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
0
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
35.2 to 41.6
Residuals, % 0
0 to 0.5