MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. C68100 Brass

EN 1.4913 stainless steel belongs to the iron alloys classification, while C68100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is C68100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14 to 22
29
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 870 to 980
380
Tensile Strength: Yield (Proof), MPa 480 to 850
140

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 700
120
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 24
98
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 97
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
86
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
94
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 35
13
Strength to Weight: Bending, points 26 to 28
15
Thermal Diffusivity, mm2/s 6.5
32
Thermal Shock Resistance, points 31 to 34
13

Alloy Composition

Aluminum (Al), % 0 to 0.020
0 to 0.010
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0
56 to 60
Iron (Fe), % 84.5 to 88.3
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.9
0.010 to 0.5
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
0
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0.040 to 0.15
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.75 to 1.1
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
36.4 to 43
Residuals, % 0
0 to 0.5