MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. C72700 Copper-nickel

EN 1.4913 stainless steel belongs to the iron alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14 to 22
4.0 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 550 to 590
310 to 620
Tensile Strength: Ultimate (UTS), MPa 870 to 980
460 to 1070
Tensile Strength: Yield (Proof), MPa 480 to 850
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 700
200
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1410
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 24
54
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
36
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.9
4.0
Embodied Energy, MJ/kg 41
62
Embodied Water, L/kg 97
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
1420 to 4770
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 35
14 to 34
Strength to Weight: Bending, points 26 to 28
15 to 26
Thermal Diffusivity, mm2/s 6.5
16
Thermal Shock Resistance, points 31 to 34
16 to 38

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0
82.1 to 86
Iron (Fe), % 84.5 to 88.3
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.4 to 0.9
0.050 to 0.3
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
8.5 to 9.5
Niobium (Nb), % 0.25 to 0.55
0 to 0.1
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
5.5 to 6.5
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3