MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. C86300 Bronze

EN 1.4913 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 14 to 22
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 870 to 980
850
Tensile Strength: Yield (Proof), MPa 480 to 850
480

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 700
160
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 24
35
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
23
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.0
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 97
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
100
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 35
30
Strength to Weight: Bending, points 26 to 28
25
Thermal Diffusivity, mm2/s 6.5
11
Thermal Shock Resistance, points 31 to 34
28

Alloy Composition

Aluminum (Al), % 0 to 0.020
5.0 to 7.5
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 84.5 to 88.3
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.4 to 0.9
2.5 to 5.0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
0 to 1.0
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0