MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. C95800 Bronze

EN 1.4913 stainless steel belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14 to 22
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 870 to 980
660
Tensile Strength: Yield (Proof), MPa 480 to 850
270

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 700
230
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 24
36
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 41
55
Embodied Water, L/kg 97
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
310
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 35
22
Strength to Weight: Bending, points 26 to 28
20
Thermal Diffusivity, mm2/s 6.5
9.9
Thermal Shock Resistance, points 31 to 34
23

Alloy Composition

Aluminum (Al), % 0 to 0.020
8.5 to 9.5
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0
79 to 83.2
Iron (Fe), % 84.5 to 88.3
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.4 to 0.9
0.8 to 1.5
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
4.0 to 5.0
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.1 to 0.3
0
Residuals, % 0
0 to 0.5