MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. S40975 Stainless Steel

Both EN 1.4913 stainless steel and S40975 stainless steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14 to 22
22
Fatigue Strength, MPa 320 to 480
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
75
Shear Strength, MPa 550 to 590
290
Tensile Strength: Ultimate (UTS), MPa 870 to 980
460
Tensile Strength: Yield (Proof), MPa 480 to 850
310

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Corrosion, °C 430
450
Maximum Temperature: Mechanical, °C 700
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 24
26
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.0
Embodied Energy, MJ/kg 41
28
Embodied Water, L/kg 97
95

Common Calculations

PREN (Pitting Resistance) 14
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
93
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 35
17
Strength to Weight: Bending, points 26 to 28
17
Thermal Diffusivity, mm2/s 6.5
7.0
Thermal Shock Resistance, points 31 to 34
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0 to 0.030
Chromium (Cr), % 10 to 11.5
10.5 to 11.7
Iron (Fe), % 84.5 to 88.3
84.4 to 89
Manganese (Mn), % 0.4 to 0.9
0 to 1.0
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
0.5 to 1.0
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.75
Vanadium (V), % 0.1 to 0.3
0