MakeItFrom.com
Menu (ESC)

EN 1.4922 Stainless Steel vs. EN 1.1133 Steel

Both EN 1.4922 stainless steel and EN 1.1133 steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4922 stainless steel and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
19 to 24
Fatigue Strength, MPa 330
230 to 310
Impact Strength: V-Notched Charpy, J 38
45 to 48
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 470
370 to 380
Tensile Strength: Ultimate (UTS), MPa 770
580 to 620
Tensile Strength: Yield (Proof), MPa 550
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 720
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
49
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 40
19
Embodied Water, L/kg 100
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 770
270 to 550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
21 to 22
Strength to Weight: Bending, points 24
20 to 21
Thermal Diffusivity, mm2/s 6.5
13
Thermal Shock Resistance, points 27
18 to 19

Alloy Composition

Carbon (C), % 0.17 to 0.23
0.17 to 0.23
Chromium (Cr), % 10 to 12.5
0 to 0.4
Iron (Fe), % 83.5 to 88.2
96.9 to 98.8
Manganese (Mn), % 0.3 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 0.8 to 1.2
0 to 0.1
Nickel (Ni), % 0.3 to 0.8
0 to 0.4
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Vanadium (V), % 0.2 to 0.35
0