MakeItFrom.com
Menu (ESC)

EN 1.4922 Stainless Steel vs. C93800 Bronze

EN 1.4922 stainless steel belongs to the iron alloys classification, while C93800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4922 stainless steel and the bottom bar is C93800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
96
Elongation at Break, % 16
9.7
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
35
Tensile Strength: Ultimate (UTS), MPa 770
200
Tensile Strength: Yield (Proof), MPa 550
120

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 720
140
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
340
Thermal Conductivity, W/m-K 24
52
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
31
Density, g/cm3 7.8
9.1
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 40
51
Embodied Water, L/kg 100
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
17
Resilience: Unit (Modulus of Resilience), kJ/m3 770
70
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 27
6.1
Strength to Weight: Bending, points 24
8.4
Thermal Diffusivity, mm2/s 6.5
17
Thermal Shock Resistance, points 27
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 10 to 12.5
0
Copper (Cu), % 0
75 to 79
Iron (Fe), % 83.5 to 88.2
0 to 0.15
Lead (Pb), % 0
13 to 16
Manganese (Mn), % 0.3 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0