MakeItFrom.com
Menu (ESC)

EN 1.4922 Stainless Steel vs. S44330 Stainless Steel

Both EN 1.4922 stainless steel and S44330 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4922 stainless steel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
25
Fatigue Strength, MPa 330
160
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
78
Shear Strength, MPa 470
280
Tensile Strength: Ultimate (UTS), MPa 770
440
Tensile Strength: Yield (Proof), MPa 550
230

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 380
560
Maximum Temperature: Mechanical, °C 720
990
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
21
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
40
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 15
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
91
Resilience: Unit (Modulus of Resilience), kJ/m3 770
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
16
Strength to Weight: Bending, points 24
17
Thermal Diffusivity, mm2/s 6.5
5.7
Thermal Shock Resistance, points 27
16

Alloy Composition

Carbon (C), % 0.17 to 0.23
0 to 0.025
Chromium (Cr), % 10 to 12.5
20 to 23
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 83.5 to 88.2
72.5 to 79.7
Manganese (Mn), % 0.3 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.8
Vanadium (V), % 0.2 to 0.35
0