EN 1.4923 Stainless Steel vs. ACI-ASTM CB7Cu-1 Steel
Both EN 1.4923 stainless steel and ACI-ASTM CB7Cu-1 steel are iron alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is ACI-ASTM CB7Cu-1 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 12 to 21 | |
5.7 to 11 |
Fatigue Strength, MPa | 300 to 440 | |
420 to 590 |
Impact Strength: V-Notched Charpy, J | 22 to 30 | |
34 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 76 | |
76 |
Tensile Strength: Ultimate (UTS), MPa | 870 to 980 | |
960 to 1350 |
Tensile Strength: Yield (Proof), MPa | 470 to 780 | |
760 to 1180 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
280 |
Melting Completion (Liquidus), °C | 1450 | |
1430 |
Melting Onset (Solidus), °C | 1410 | |
1500 |
Specific Heat Capacity, J/kg-K | 480 | |
480 |
Thermal Conductivity, W/m-K | 24 | |
17 |
Thermal Expansion, µm/m-K | 11 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.9 | |
2.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.3 | |
2.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 8.0 | |
13 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.9 | |
2.6 |
Embodied Energy, MJ/kg | 41 | |
38 |
Embodied Water, L/kg | 100 | |
130 |
Common Calculations
PREN (Pitting Resistance) | 15 | |
17 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 150 | |
71 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 570 to 1580 | |
1500 to 3590 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 31 to 35 | |
34 to 48 |
Strength to Weight: Bending, points | 26 to 28 | |
28 to 35 |
Thermal Diffusivity, mm2/s | 6.5 | |
4.6 |
Thermal Shock Resistance, points | 30 to 34 | |
32 to 45 |
Alloy Composition
Carbon (C), % | 0.18 to 0.24 | |
0 to 0.070 |
Chromium (Cr), % | 11 to 12.5 | |
15.5 to 17.7 |
Copper (Cu), % | 0 | |
2.5 to 3.2 |
Iron (Fe), % | 83.5 to 87.1 | |
72.3 to 78.4 |
Manganese (Mn), % | 0.4 to 0.9 | |
0 to 0.7 |
Molybdenum (Mo), % | 0.8 to 1.2 | |
0 |
Nickel (Ni), % | 0.3 to 0.8 | |
3.6 to 4.6 |
Niobium (Nb), % | 0 | |
0 to 0.35 |
Nitrogen (N), % | 0 | |
0 to 0.050 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.5 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.030 |
Vanadium (V), % | 0.25 to 0.35 | |
0 |