MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. EN 1.1147 Steel

Both EN 1.4923 stainless steel and EN 1.1147 steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is EN 1.1147 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 21
12 to 17
Fatigue Strength, MPa 300 to 440
180 to 250
Poisson's Ratio 0.28
0.29
Reduction in Area, % 40 to 46
63 to 73
Shear Modulus, GPa 76
73
Shear Strength, MPa 540 to 590
280
Tensile Strength: Ultimate (UTS), MPa 870 to 980
390 to 470
Tensile Strength: Yield (Proof), MPa 470 to 780
280 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 740
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 24
51
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 41
18
Embodied Water, L/kg 100
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
40 to 73
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
210 to 370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 35
14 to 17
Strength to Weight: Bending, points 26 to 28
15 to 17
Thermal Diffusivity, mm2/s 6.5
14
Thermal Shock Resistance, points 30 to 34
12 to 15

Alloy Composition

Carbon (C), % 0.18 to 0.24
0.15 to 0.19
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 83.5 to 87.1
98.3 to 99.25
Manganese (Mn), % 0.4 to 0.9
0.6 to 0.9
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.025
Vanadium (V), % 0.25 to 0.35
0

Comparable Variants