MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. C10800 Copper

EN 1.4923 stainless steel belongs to the iron alloys classification, while C10800 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is C10800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 21
4.0 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 540 to 590
150 to 200
Tensile Strength: Ultimate (UTS), MPa 870 to 980
220 to 380
Tensile Strength: Yield (Proof), MPa 470 to 780
75 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 740
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 24
350
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
92
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
92

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
15 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
24 to 600
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 31 to 35
6.8 to 12
Strength to Weight: Bending, points 26 to 28
9.1 to 13
Thermal Diffusivity, mm2/s 6.5
100
Thermal Shock Resistance, points 30 to 34
7.8 to 13

Alloy Composition

Carbon (C), % 0.18 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
99.95 to 99.995
Iron (Fe), % 83.5 to 87.1
0
Manganese (Mn), % 0.4 to 0.9
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0.0050 to 0.012
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.25 to 0.35
0

Comparable Variants