MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. C42200 Brass

EN 1.4923 stainless steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 21
2.0 to 46
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 540 to 590
210 to 350
Tensile Strength: Ultimate (UTS), MPa 870 to 980
300 to 610
Tensile Strength: Yield (Proof), MPa 470 to 780
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 24
130
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
31
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
32

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 41
44
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
49 to 1460
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 35
9.5 to 19
Strength to Weight: Bending, points 26 to 28
11 to 18
Thermal Diffusivity, mm2/s 6.5
39
Thermal Shock Resistance, points 30 to 34
10 to 21

Alloy Composition

Carbon (C), % 0.18 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 83.5 to 87.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.9
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0 to 0.35
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.8 to 1.4
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5

Comparable Variants