MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. S44800 Stainless Steel

Both EN 1.4923 stainless steel and S44800 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 12 to 21
23
Fatigue Strength, MPa 300 to 440
300
Poisson's Ratio 0.28
0.27
Reduction in Area, % 40 to 46
45
Shear Modulus, GPa 76
82
Shear Strength, MPa 540 to 590
370
Tensile Strength: Ultimate (UTS), MPa 870 to 980
590
Tensile Strength: Yield (Proof), MPa 470 to 780
450

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 380
460
Maximum Temperature: Mechanical, °C 740
1100
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 24
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.8
Embodied Energy, MJ/kg 41
52
Embodied Water, L/kg 100
190

Common Calculations

PREN (Pitting Resistance) 15
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
480
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 35
21
Strength to Weight: Bending, points 26 to 28
20
Thermal Diffusivity, mm2/s 6.5
4.6
Thermal Shock Resistance, points 30 to 34
19

Alloy Composition

Carbon (C), % 0.18 to 0.24
0 to 0.010
Chromium (Cr), % 11 to 12.5
28 to 30
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 83.5 to 87.1
62.6 to 66.5
Manganese (Mn), % 0.4 to 0.9
0 to 0.3
Molybdenum (Mo), % 0.8 to 1.2
3.5 to 4.2
Nickel (Ni), % 0.3 to 0.8
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0 to 0.020
Vanadium (V), % 0.25 to 0.35
0