MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. EN 1.5410 Steel

Both EN 1.4931 steel and EN 1.5410 steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is EN 1.5410 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
170 to 190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
20 to 25
Fatigue Strength, MPa 410
290 to 330
Impact Strength: V-Notched Charpy, J 30
67 to 68
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 810
560 to 620
Tensile Strength: Yield (Proof), MPa 620
400 to 480

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
51
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 42
22
Embodied Water, L/kg 100
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 970
430 to 610
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 29
20 to 22
Strength to Weight: Bending, points 25
19 to 21
Thermal Diffusivity, mm2/s 6.5
14
Thermal Shock Resistance, points 22
16 to 18

Alloy Composition

Carbon (C), % 0.2 to 0.26
0 to 0.12
Chromium (Cr), % 11.3 to 12.2
0
Iron (Fe), % 83.2 to 86.8
96.9 to 98.6
Manganese (Mn), % 0.5 to 0.8
1.2 to 1.8
Molybdenum (Mo), % 1.0 to 1.2
0.2 to 0.4
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.020
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0.050 to 0.1