MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C19000 Copper

EN 1.4931 steel belongs to the iron alloys classification, while C19000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C19000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
2.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 810
260 to 760
Tensile Strength: Yield (Proof), MPa 620
140 to 630

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
250
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
60
Electrical Conductivity: Equal Weight (Specific), % IACS 11
61

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
18 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 970
89 to 1730
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 29
8.2 to 24
Strength to Weight: Bending, points 25
10 to 21
Thermal Diffusivity, mm2/s 6.5
73
Thermal Shock Resistance, points 22
9.3 to 27

Alloy Composition

Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
96.9 to 99
Iron (Fe), % 83.2 to 86.8
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0.9 to 1.3
Phosphorus (P), % 0 to 0.030
0.15 to 0.35
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5