MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C19400 Copper

EN 1.4931 steel belongs to the iron alloys classification, while C19400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
2.3 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 810
310 to 630
Tensile Strength: Yield (Proof), MPa 620
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
260
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 11
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 42
40
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 970
41 to 1140
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 29
9.7 to 20
Strength to Weight: Bending, points 25
11 to 18
Thermal Diffusivity, mm2/s 6.5
75
Thermal Shock Resistance, points 22
11 to 22

Alloy Composition

Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
96.8 to 97.8
Iron (Fe), % 83.2 to 86.8
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0.015 to 0.15
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.2