MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C19800 Copper

EN 1.4931 steel belongs to the iron alloys classification, while C19800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
9.0 to 12
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 810
430 to 550
Tensile Strength: Yield (Proof), MPa 620
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
260
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
61
Electrical Conductivity: Equal Weight (Specific), % IACS 11
62

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 970
770 to 1320
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 29
14 to 17
Strength to Weight: Bending, points 25
14 to 17
Thermal Diffusivity, mm2/s 6.5
75
Thermal Shock Resistance, points 22
15 to 20

Alloy Composition

Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
95.7 to 99.47
Iron (Fe), % 83.2 to 86.8
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0.010 to 0.1
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.1 to 1.0
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2