MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C66200 Brass

EN 1.4931 steel belongs to the iron alloys classification, while C66200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
8.0 to 15
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 810
450 to 520
Tensile Strength: Yield (Proof), MPa 620
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 600
180
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
150
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
35
Electrical Conductivity: Equal Weight (Specific), % IACS 11
36

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 970
760 to 1030
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29
14 to 17
Strength to Weight: Bending, points 25
15 to 16
Thermal Diffusivity, mm2/s 6.5
45
Thermal Shock Resistance, points 22
16 to 18

Alloy Composition

Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
86.6 to 91
Iron (Fe), % 83.2 to 86.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0.3 to 1.0
Phosphorus (P), % 0 to 0.030
0.050 to 0.2
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.2 to 0.7
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5