MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C67400 Bronze

EN 1.4931 steel belongs to the iron alloys classification, while C67400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
22 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 810
480 to 610
Tensile Strength: Yield (Proof), MPa 620
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 600
130
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 24
100
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
23
Electrical Conductivity: Equal Weight (Specific), % IACS 11
26

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 42
48
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 970
300 to 660
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 29
17 to 22
Strength to Weight: Bending, points 25
17 to 20
Thermal Diffusivity, mm2/s 6.5
32
Thermal Shock Resistance, points 22
16 to 20

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 83.2 to 86.8
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.5 to 0.8
2.0 to 3.5
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.4
0.5 to 1.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.3
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5