MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C72900 Copper-nickel

EN 1.4931 steel belongs to the iron alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
6.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 810
870 to 1080
Tensile Strength: Yield (Proof), MPa 620
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
210
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
950
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 24
29
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.9
4.6
Embodied Energy, MJ/kg 42
72
Embodied Water, L/kg 100
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 970
2030 to 3490
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29
27 to 34
Strength to Weight: Bending, points 25
23 to 27
Thermal Diffusivity, mm2/s 6.5
8.6
Thermal Shock Resistance, points 22
31 to 38

Alloy Composition

Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
74.1 to 78
Iron (Fe), % 83.2 to 86.8
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.5 to 0.8
0 to 0.3
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
7.5 to 8.5
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3