MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. 4145 Aluminum

EN 1.4938 stainless steel belongs to the iron alloys classification, while 4145 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is 4145 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 16 to 17
2.2
Fatigue Strength, MPa 390 to 520
48
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Shear Strength, MPa 540 to 630
69
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
120
Tensile Strength: Yield (Proof), MPa 640 to 870
68

Thermal Properties

Latent Heat of Fusion, J/g 270
540
Maximum Temperature: Mechanical, °C 750
160
Melting Completion (Liquidus), °C 1460
590
Melting Onset (Solidus), °C 1420
520
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 30
100
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
84

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 3.3
7.6
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 110
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
31
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 31 to 37
12
Strength to Weight: Bending, points 26 to 29
19
Thermal Diffusivity, mm2/s 8.1
42
Thermal Shock Resistance, points 30 to 35
5.5

Alloy Composition

Aluminum (Al), % 0
83 to 87.4
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0 to 0.15
Copper (Cu), % 0
3.3 to 4.7
Iron (Fe), % 80.5 to 84.8
0 to 0.8
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.4 to 0.9
0 to 0.15
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
9.3 to 10.7
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15