MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. 5254 Aluminum

EN 1.4938 stainless steel belongs to the iron alloys classification, while 5254 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is 5254 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 16 to 17
3.4 to 22
Fatigue Strength, MPa 390 to 520
110 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 540 to 630
150 to 200
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
240 to 350
Tensile Strength: Yield (Proof), MPa 640 to 870
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 750
190
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 30
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
32
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.3
8.8
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
11 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
73 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 31 to 37
25 to 37
Strength to Weight: Bending, points 26 to 29
32 to 41
Thermal Diffusivity, mm2/s 8.1
52
Thermal Shock Resistance, points 30 to 35
10 to 16

Alloy Composition

Aluminum (Al), % 0
94.4 to 96.8
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0.15 to 0.35
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 80.5 to 84.8
0 to 0.45
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0.4 to 0.9
0 to 0.010
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.45
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants